MIT team builds energy-friendly chip to better perform AI tasks

New York, Feb 8 (IANS) A team of US researchers has built an energy-friendly chip that can perform powerful artificial intelligence (AI) tasks, enabling future mobile devices to implement “neural networks” modelled on the human brain.

The team from Massachusetts Institute of Technology (MIT) developed a new chip designed specifically to implement neural networks.

It is 10 times as efficient as a mobile GPU (Graphics Processing Unit) so it could enable mobile devices to run powerful AI algorithms locally rather than uploading data to the internet for processing.

The GPU is a specialised circuit designed to accelerate the image output in a frame buffer intended for output to a display.

Modern smartphones are equipped with advanced embedded chipsets that can do many different tasks depending on their programming.

GPUs are an essential part of those chipsets and as mobile games are pushing the boundaries of their capabilities, the GPU performance is becoming increasingly important.

Neural nets were widely studied in the early days of artificial-intelligence research, but by the 1970s, they had fallen out of favour. In the past decade, however, they have come back under the name “deep learning.”

“Deep learning is useful for many applications such as object recognition, speech and face detection,” said Vivienne Sze, assistant professor in MIT’s department of electrical engineering and computer science, in a MIT statement.

The new chip, which the researchers dubbed “Eyeriss,” can also help usher in the “Internet of things” – the idea that vehicles, appliances, civil-engineering structures, manufacturing equipment, and even livestock would have sensors that report information directly to networked servers, aiding with maintenance and task coordination.

With powerful AI algorithms on board, networked devices could make important decisions locally, entrusting only their conclusions, rather than raw personal data, to the internet.

The team presented their findings at the “International Solid State Circuits Conference” in San Francisco recently.

At the conference, the MIT researchers used “Eyeriss” to implement a neural network that performs an image-recognition task. It was for the first time that a state-of-the-art neural network has been demonstrated on a custom chip.

“This work is very important, showing how embedded processors for deep learning can provide power and performance optimizations that will bring these complex computations from the cloud to mobile devices,” explained Mike Polley, senior vice president at Samsung’s mobile processor innovations lab.

Leave a Reply

Please enter your comment!

The opinions, views, and thoughts expressed by the readers and those providing comments are theirs alone and do not reflect the opinions of www.mangalorean.com or any employee thereof. www.mangalorean.com is not responsible for the accuracy of any of the information supplied by the readers. Responsibility for the content of comments belongs to the commenter alone.  

We request the readers to refrain from posting defamatory, inflammatory comments and not indulge in personal attacks. However, it is obligatory on the part of www.mangalorean.com to provide the IP address and other details of senders of such comments to the concerned authorities upon their request.

Hence we request all our readers to help us to delete comments that do not follow these guidelines by informing us at  info@mangalorean.com. Lets work together to keep the comments clean and worthful, thereby make a difference in the community.

Please enter your name here