Novel sunscreen compound to prevent UV-A radiation developed

Novel sunscreen compound to prevent UV-A radiation developed

London, July 21 (IANS) Researchers have developed a new compound that offers unprecedented protection to the skin against the harmful effects of ultraviolet-A (UV-A) radiation in sunlight.

Most sunscreens in the market protect the skin well against solar UV-B (shortwave) radiation but have limited effectiveness against damage induced by UV-A (long-wave), relying on the reflective properties of creams to defend against dangerous UV-A rays, which can cause photo-ageing — premature ageing of the skin — and cell damage as well as skin cancer.

The new compound, named by the team as “mitoiron claw”, offers strong protection within our cells precisely where the greatest damage from UV-A occurs, and doesn’t interfere with rest of the cell.

“Our mitochondria-targeted compound can address an unmet need in the skincare and sunscreen fields. This mitoiron claw is a highly effective compound, offering unprecedented protection against UVA-induced mitochondrial damage,” said Charareh Pourzand from the University of Bath in Britain.

Free iron concentration is particularly high within mitochondria — the powerhouse of the cell — where it is needed for several vital functions. However, upon exposure to UV-A in sunlight, excess free iron acts as a catalyst for the production of toxic reactive oxygen species (ROS), damaging cell components such as DNA, fat and proteins thereby increasing the risk of cell death and cancer.

This custom-designed iron chelator — a molecule that binds to an iron atom like a claw — moves directly to mitochondria where it safely binds the excess free iron, preventing it from reacting upon exposure to UV-A rays, the researchers noted.

Tests with human skin fibroblast cells exposed to UV-A radiation equivalent to 140 minutes of uninterrupted sun exposure at sea level, showed that cells treated with the mitoiron claw were completely protected against cell death.

However, the cells untreated with the mitoiron claw suffered significant cell death.

“The role of iron-mediated damage induced upon exposure of skin cells to UV-A has been underestimated for many years. For efficient protection against UVA-induced iron damage of skin strong chelators are needed, but until now these risked toxic effects caused by non-targeted iron starvation of cells,” added Pourzand.

The researchers hope to see the mitoiron claw compound added to sunscreens and skin care products within 3-4 years.

The findings were published in the Journal of Investigative Dermatology.

Leave a Reply

Please enter your comment!

The opinions, views, and thoughts expressed by the readers and those providing comments are theirs alone and do not reflect the opinions of www.mangalorean.com or any employee thereof. www.mangalorean.com is not responsible for the accuracy of any of the information supplied by the readers. Responsibility for the content of comments belongs to the commenter alone.  

We request the readers to refrain from posting defamatory, inflammatory comments and not indulge in personal attacks. However, it is obligatory on the part of www.mangalorean.com to provide the IP address and other details of senders of such comments to the concerned authorities upon their request.

Hence we request all our readers to help us to delete comments that do not follow these guidelines by informing us at  info@mangalorean.com. Lets work together to keep the comments clean and worthful, thereby make a difference in the community.

Please enter your name here